λ-Rearrangements Characterization of Pringsheim Limit Points
نویسندگان
چکیده
منابع مشابه
λ-Rearrangements Characterization of Pringsheim Limit Points
In [1] Agnew presented the following theorem: if x is a bounded sequence and A is a regular summability matrix, then there exists a subsequence y of x such that each limit point of x is a limit point of Ay. Fridy [2] extended this result by replacing subsequence with rearrangement. Keagy [3] presented two theorems that strengthened the results of both Agnew and Fridy. This was accomplished by w...
متن کاملBehavioural Inverse Limit λ-Models
We construct two inverse limit λ-models which completely characterise sets of terms with similar computational behaviours: the sets of normalising, head normalising, weak head normalising λ-terms, those corresponding to the persistent versions of these notions, and the sets of closable, closable normalising, and closable head normalising λ-terms. More precisely, for each of these sets of terms ...
متن کاملOn Lacunary Statistical Limit and Cluster Points of Sequences of Fuzzy Numbers
For any lacunary sequence $theta = (k_{r})$, we define the concepts of $S_{theta}-$limit point and $S_{theta}-$cluster point of a sequence of fuzzy numbers $X = (X_{k})$. We introduce the new sets $Lambda^{F}_{S_{theta}}(X)$, $Gamma^{F}_{S_{theta}}(X)$ and prove some inclusion relaions between these and the sets $Lambda^{F}_{S}(X)$, $Gamma^{F}_{S}(X)$ introduced in ~cite{Ayt:Slpsfn} by Aytar [...
متن کاملHorospherical limit points of S-arithmetic groups
Suppose Γ is an S-arithmetic subgroup of a connected, semisimple algebraic group G over a global field Q (of any characteristic). It is well-known that Γ acts by isometries on a certain CAT(0) metric space XS = ∏ v∈S Xv, where each Xv is either a Euclidean building or a Riemannian symmetric space. For a point ξ on the visual boundary of XS , we show there exists a horoball based at ξ that is di...
متن کاملSmall Limit Points of Mahler's Measure
Let M(P (z1, . . . , zn)) denote Mahler’s measure of the polynomial P (z1, . . . , zn). Measures of polynomials in n variables arise naturally as limiting values of measures of polynomials in fewer variables. We describe several methods for searching for polynomials in two variables with integer coefficients having small measure, demonstrate effective methods for computing these measures, and i...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: International Journal of Mathematics and Mathematical Sciences
سال: 2007
ISSN: 0161-1712,1687-0425
DOI: 10.1155/2007/28205